Author:
Hur Cheong-Hwan,Lee Han-Eum,Kim Young-Joo,Kang Sang-Gil
Abstract
Nonintrusive load monitoring (NILM) is a technology that analyzes the load consumption and usage of an appliance from the total load. NILM is becoming increasingly important because residential and commercial power consumption account for about 60% of global energy consumption. Deep neural network-based NILM studies have increased rapidly as hardware computation costs have decreased. A significant amount of labeled data is required to train deep neural networks. However, installing smart meters on each appliance of all households for data collection requires the cost of geometric series. Therefore, it is urgent to detect whether the appliance is used from the total load without installing a separate smart meter. In other words, domain adaptation research, which can interpret the huge complexity of data and generalize information from various environments, has become a major challenge for NILM. In this research, we optimize domain adaptation by employing techniques such as robust knowledge distillation based on teacher–student structure, reduced complexity of feature distribution based on gkMMD, TCN-based feature extraction, and pseudo-labeling-based domain stabilization. In the experiments, we down-sample the UK-DALE and REDD datasets as in the real environment, and then verify the proposed model in various cases and discuss the results.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献