Defocused Images Change Multineuronal Firing Patterns in the Mouse Retina

Author:

Banerjee Seema,Wang QinORCID,So Chung Him,Pan FengORCID

Abstract

Myopia is a major public health problem, affecting one third of the population over 12 years old in the United States and more than 80% of people in Hong Kong. Myopia is attributable to elongation of the eyeball in response to defocused images that alter eye growth and refraction. It is known that the retina can sense the focus of an image, but the effects of defocused images on signaling of population of retinal ganglion cells (RGCs) that account either for emmetropization or refractive errors has still to be elucidated. Thorough knowledge of the underlying mechanisms could provide insight to understanding myopia. In this study, we found that focused and defocused images can change both excitatory and inhibitory conductance of ON alpha, OFF alpha and ON–OFF retinal ganglion cells in the mouse retina. The firing patterns of population of RGCs vary under the different powers of defocused images and can be affected by dopamine receptor agonists/antagonists’ application. OFF-delayed RGCs or displaced amacrine cells (dACs) with time latency of more than 0.3 s had synchrony firing with other RGCs and/or dACs. These spatial synchrony firing patterns between OFF-delayed cell and other RGCs/dACs were significantly changed by defocused image, which may relate to edge detection. The results suggested that defocused images induced changes in the multineuronal firing patterns and whole cell conductance in the mouse retina. The multineuronal firing patterns can be affected by dopamine receptors’ agonists and antagonists. Synchronous firing of OFF-delayed cells is possibly related to edge detection, and understanding of this process may reveal a potential therapeutic target for myopia patients.

Publisher

MDPI AG

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3