Using a Stochastic Agent Model to Optimize Performance in Divergent Interest Tacit Coordination Games

Author:

Mizrahi Dor,Zuckerman InonORCID,Laufer Ilan

Abstract

In recent years collaborative robots have become major market drivers in industry 5.0, which aims to incorporate them alongside humans in a wide array of settings ranging from welding to rehabilitation. Improving human–machine collaboration entails using computational algorithms that will save processing as well as communication cost. In this study we have constructed an agent that can choose when to cooperate using an optimal strategy. The agent was designed to operate in the context of divergent interest tacit coordination games in which communication between the players is not possible and the payoff is not symmetric. The agent’s model was based on a behavioral model that can predict the probability of a player converging on prominent solutions with salient features (e.g., focal points) based on the player’s Social Value Orientation (SVO) and the specific game features. The SVO theory pertains to the preferences of decision makers when allocating joint resources between themselves and another player in the context of behavioral game theory. The agent selected stochastically between one of two possible policies, a greedy or a cooperative policy, based on the probability of a player to converge on a focal point. The distribution of the number of points obtained by the autonomous agent incorporating the SVO in the model was better than the results obtained by the human players who played against each other (i.e., the distribution associated with the agent had a higher mean value). Moreover, the distribution of points gained by the agent was better than any of the separate strategies the agent could choose from, namely, always choosing a greedy or a focal point solution. To the best of our knowledge, this is the first attempt to construct an intelligent agent that maximizes its utility by incorporating the belief system of the player in the context of tacit bargaining. This reward-maximizing strategy selection process based on the SVO can also be potentially applied in other human–machine contexts, including multiagent systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference55 articles.

1. The Strategy of Conflict;Schelling,1960

2. A Theory of Focal Points;Sugden;Econ. J.,1995

3. Using focal point learning to improve human-machine tacit coordination;Zuckerman;Auton. Agent. Multi. Agent. Syst.,2011

4. Exploiting focal points among alternative solutions: Two approaches;Kraus;Ann. Math. Artif. Intell.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3