Surface Plasmon Resonance Imaging Sensor for Detection of Photolytically and Photocatalytically Degraded Glyphosate

Author:

Vráblová MartinaORCID,Smutná KateřinaORCID,Koutník Ivan,Prostějovský Tomáš,Žebrák Radim

Abstract

Glyphosate is one of the most widely used pesticides, which, together with its primary metabolite aminomethylphosphonic acid, remains present in the environment. Many technologies have been developed to reduce glyphosate amounts in water. Among them, heterogeneous photocatalysis with titanium dioxide as a commonly used photocatalyst achieves high removal efficiency. Nevertheless, glyphosate is often converted to organic intermediates during its degradation. The detection of degraded glyphosate and emerging products is, therefore, an important element of research in terms of disposal methods. Attention is being paid to new sensors enabling the fast detection of glyphosate and its degradation products, which would allow the monitoring of its removal process in real time. The surface plasmon resonance imaging (SPRi) method is a promising technique for sensing emerging pollutants in water. The aim of this work was to design, create, and test an SPRi biosensor suitable for the detection of glyphosate during photolytic and photocatalytic experiments focused on its degradation. Cytochrome P450 and TiO2 were selected as the detection molecules. We developed a sensor for the detection of the target molecules with a low molecular weight for monitoring the process of glyphosate degradation, which could be applied in a flow-through arrangement and thus detect changes taking place in real-time. We believe that SPRi sensing could be widely used in the study of xenobiotic removal from surface water or wastewater.

Funder

Ministry of Education Youth and Sports

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3