Abstract
Two-dimensional arrays of hollow nanotubes made of TiO 2 are a promising platform for sensing, spectroscopy and light harvesting applications. Their straightforward fabrication via electrochemical anodization, growing nanotube pillars of finite length from a Ti foil, allows precise tailoring of geometry and, thus, material properties. We theoretically investigate these photonic crystal structures with respect to reduction of front surface reflection, achievable field enhancement, and photonic bands. Employing the Rigorous Coupled Wave Analysis (RCWA), we study the optical response of photonic crystals made of thin-walled nanotubes relative to their bare Ti foil substrate, including under additional charge carrier doping which might occur during the growth process.
Funder
European Cooperation in Science and Technology
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献