Abstract
We propose an amplitude shift keying-type asymmetric quantum communication (AQC) system that uses an entangled state. As a first step toward development of this system, we evaluated and considered the communication performance of the proposed receiver when applied to the AQC system using a two-mode squeezed vacuum state (TSVS), the maximum quasi-Bell state, and the non-maximum quasi-Bell state, along with an asymmetric classical communication (ACC) system using the coherent state. Specifically, we derived an analytical expression for the error probability of the AQC system using the quasi-Bell state. Comparison of the error probabilities of the ACC system and the AQC systems when using the TSVS and the quasi-Bell state shows that the AQC system using the quasi-Bell state offers a clear performance advantage under specific conditions. Additionally, it was clarified that there are cases where the universal lower bound on the error probability for the AQC system was almost achieved when using the quasi-Bell state, unlike the case in which the TSVS was used.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献