Yield Estimation of Paddy Rice Based on Satellite Imagery: Comparison of Global and Local Regression Models

Author:

Shiu Yi-Shiang,Chuang Yung-ChungORCID

Abstract

Precisely estimating the yield of paddy rice is crucial for national food security and development evaluation. Rice yield estimation based on satellite imagery is usually performed with global regression models; however, estimation errors may occur because the spatial variation is not considered. Therefore, this study proposed an approach estimating paddy rice yield based on global and local regression models. In our study area, the overall per-field data might not available because it took lots of time and manpower as well as resources. Therefore, we gathered and accumulated 26 to 63 ground survey sample fields, accounting for about 0.05% of the total cultivated areas, as the training samples for our regression models. To demonstrate whether the spatial autocorrelation or spatial heterogeneity exists and dominates the estimation, global models including the ordinary least squares (OLS), support vector regression (SVR), and the local model geographically weighted regression (GWR) were used to build the yield estimation models. We obtained the representative independent variables, including 4 original bands, 11 vegetation indices, and 32 texture indices, from SPOT-7 multispectral satellite imagery. To determine the optimal variable combination, feature selection based on the Pearson correlation was used for all of the regression models. The case study in Central Taiwan rendered that the error rate was between 0.06% and 13.22%. Through feature selection, the GWR model’s performance was more relatively stable than the OLS model and nonlinear SVR model for yield estimation. Where the GWR model considers the spatial autocorrelation and spatial heterogeneity of the relationships between the yield and the independent variables, the OLS and nonlinear SVR models lack this feature; this led to the rice yield estimation of GWR in this study be more stable than those of the other two models.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3