Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian Mountain Region during 2000–2017

Author:

Geng LiyingORCID,Che TaoORCID,Wang XufengORCID,Wang HaiboORCID

Abstract

The Qilian Mountain ecosystems play an irreplaceable role in maintaining ecological security in western China. Vegetation, as an important part of the ecosystem, has undergone considerable changes in recent decades in this area, but few studies have focused on the process of vegetation change. A long normalized difference vegetation index (NDVI) time series dataset based on remote sensing is an effective tool to investigate large-scale vegetation change dynamics. The MODerate resolution Imaging Spectroradiometer (MODIS) NDVI dataset has provided very detailed regional to global information on the state of vegetation since 2000. The aim of this study was to explore the spatial-temporal characteristics of abrupt vegetation changes and detect their potential drivers in the Qilian Mountain area using MODIS NDVI data with 1 km resolution from 2000 to 2017. The Breaks for Additive Season and Trend (BFAST) algorithm was adopted to detect vegetation breakpoint change times and magnitudes from satellite observations. Our results indicated that approximately 80.1% of vegetation areas experienced at least one abrupt change from 2000 to 2017, and most of these areas were distributed in the southern and northern parts of the study area, especially the area surrounding Qinghai Lake. The abrupt browning changes were much more widespread than the abrupt greening changes for most years of the study period. Environmental factors and anthropogenic activities mainly drove the abrupt vegetation changes. Long-term overgrazing is likely the main cause of the abrupt browning changes. In addition, our results indicate that national ecological protection policies have achieved positive effects in the study area.

Funder

The Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3