Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data

Author:

Xie Zhuli,Chen Yaoliang,Lu Dengsheng,Li GuiyingORCID,Chen Erxue

Abstract

The global availability of high spatial resolution images makes mapping tree species distribution possible for better management of forest resources. Previous research mainly focused on mapping single tree species, but information about the spatial distribution of all kinds of trees, especially plantations, is often required. This research aims to identify suitable variables and algorithms for classifying land cover, forest, and tree species. Bi-temporal ZiYuan-3 multispectral and stereo images were used. Spectral responses and textures from multispectral imagery, canopy height features from bi-temporal stereo imagery, and slope and elevation from the stereo-derived digital surface model data were examined through comparative analysis of six classification algorithms including maximum likelihood classifier (MLC), k-nearest neighbor (kNN), decision tree (DT), random forest (RF), artificial neural network (ANN), and support vector machine (SVM). The results showed that use of multiple source data—spectral bands, vegetation indices, textures, and topographic factors—considerably improved land-cover and forest classification accuracies compared to spectral bands alone, which the highest overall accuracy of 84.5% for land cover classes was from the SVM, and, of 89.2% for forest classes, was from the MLC. The combination of leaf-on and leaf-off seasonal images further improved classification accuracies by 7.8% to 15.0% for land cover classes and by 6.0% to 11.8% for forest classes compared to single season spectral image. The combination of multiple source data also improved land cover classification by 3.7% to 15.5% and forest classification by 1.0% to 12.7% compared to the spectral image alone. MLC provided better land-cover and forest classification accuracies than machine learning algorithms when spectral data alone were used. However, some machine learning approaches such as RF and SVM provided better performance than MLC when multiple data sources were used. Further addition of canopy height features into multiple source data had no or limited effects in improving land-cover or forest classification, but improved classification accuracies of some tree species such as birch and Mongolia scotch pine. Considering tree species classification, Chinese pine, Mongolia scotch pine, red pine, aspen and elm, and other broadleaf trees as having classification accuracies of over 92%, and larch and birch have relatively low accuracies of 87.3% and 84.5%. However, these high classification accuracies are from different data sources and classification algorithms, and no one classification algorithm provided the best accuracy for all tree species classes. This research implies the same data source and the classification algorithm cannot provide the best classification results for different land cover classes. It is necessary to develop a comprehensive classification procedure using an expert-based approach or hierarchical-based classification approach that can employ specific data variables and algorithm for each tree species class.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3