Efficient Lidar Signal Denoising Algorithm Using Variational Mode Decomposition Combined with a Whale Optimization Algorithm

Author:

Li Hongxu,Chang Jianhua,Xu Fan,Liu Zhenxing,Yang Zhenbo,Zhang Luyao,Zhang Shuyi,Mao Renxiang,Dou Xiaolei,Liu Binggang

Abstract

Although lidar is a powerful active remote sensing technology, lidar echo signals are easily contaminated by noise, particularly in strong background light, which severely affects the retrieval accuracy and the effective detection range of the lidar system. In this study, a coupled variational mode decomposition (VMD) and whale optimization algorithm (WOA) for noise reduction in lidar signals is proposed and demonstrated completely. The combination of optimal VMD parameters of decomposition mode number K and quadratic penalty α was obtained by using the WOA and was critical in acquiring satisfactory analysis results for VMD denoising technology. Then, the Bhattacharyya distance was applied to identify the relevant modes, which were reconstructed to achieve noise filtering. Simulation results show that the performance of the proposed VMD-WOA method is superior to that of wavelet transform, empirical mode decomposition, and its variations. Experimentally, this method was successfully used to filter a lidar echo signal. The signal-to-noise ratio of the denoised signal was increased to 23.92 dB, and the detection range was extended from 6 to 10 km.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3