Applications of TRMM- and GPM-Era Multiple-Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Myanmar

Author:

Yuan FeiORCID,Zhang Limin,Soe Khin,Ren Liliang,Zhao Chongxu,Zhu Yonghua,Jiang Shanhu,Liu Yi

Abstract

Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM), have provided hydrologists with important precipitation data sources for hydrological applications in sparsely gauged or ungauged basins. This study proposes a framework for statistical and hydrological assessment of the TRMM- and GPM-era satellite-based precipitation products (SPPs) in both near- and post-real-time versions at sub-daily temporal scales in a poorly gauged watershed in Myanmar. It evaluates six of the latest GPM-era SPPs: Integrated Multi-satellite Retrievals for GPM (IMERG) “Early”, “Late”, and “Final” run SPPs (IMERG-E, IMERG-L, and IMERG-F, respectively), and Global Satellite Mapping of Precipitation (GSMaP) near-real-time (GSMaP-NRT), standard version (GSMaP-MVK), and standard version with gauge-adjustment (GSMaP-GAUGE) SPPs, and two TRMM Multi-satellite Precipitation Analysis SPPs (3B42RT and 3B42V7). Statistical assessment at grid and basin scales shows that 3B42RT generally presents higher quality, followed by IMERG-F and 3B42V7. IMERG-E, IMERG-L, GSMaP-NRT, GSMaP-MVK, and GSMaP-GAUGE largely underestimate total precipitation, and the three GSMaP SPPs have the lowest accuracy. Given that 3B42RT demonstrates the best quality among the evaluated four near-real-time SPPs, 3B42RT obtains satisfactory hydrological performance in 3-hourly flood simulation, with a Nash–Sutcliffe model efficiency coefficient (NSE) of 0.868, and it is comparable with the rain-gauge-based precipitation data (NSE = 0.895). In terms of post-real-time SPPs, IMERG-F and 3B42V7 demonstrate acceptable hydrological utility, and IMERG-F (NSE = 0.840) slightly outperforms 3B42V7 (NSE = 0.828). This study found that IMERG-F demonstrates comparable or even slightly better accuracy in statistical and hydrological evaluations in comparison with its predecessor, 3B42V7, indicating that GPM-era IMERG-F is the reliable replacement for TRMM-era 3B42V7 in the study area. The GPM scientific community still needs to further refine precipitation retrieving algorithms and improve the accuracy of SPPs, particularly IMERG-E, IMERG-L, and GSMaP SPPs, because ungauged basins urgently require accurate and timely precipitation data for flood control and disaster mitigation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3