The Improved Biometric Identification of Keystroke Dynamics Based on Deep Learning Approaches

Author:

Wyciślik Łukasz1ORCID,Wylężek Przemysław2,Momot Alina1ORCID

Affiliation:

1. Department of Applied Informatics, Faculty of Automatic Control, Electronics and Computer Sciences, Silesian University of Technology, 44-100 Gliwice, Poland

2. Healthcare Solutions Department, NubiSoft, 44-100 Gliwice, Poland

Abstract

In an era marked by escalating concerns about digital security, biometric identification methods have gained paramount importance. Despite the increasing adoption of biometric techniques, keystroke dynamics analysis remains a less explored yet promising avenue. This study highlights the untapped potential of keystroke dynamics, emphasizing its non-intrusive nature and distinctiveness. While keystroke dynamics analysis has not achieved widespread usage, ongoing research indicates its viability as a reliable biometric identifier. This research builds upon the existing foundation by proposing an innovative deep-learning methodology for keystroke dynamics-based identification. Leveraging open research datasets, our approach surpasses previously reported results, showcasing the effectiveness of deep learning in extracting intricate patterns from typing behaviors. This article contributes to the advancement of biometric identification, shedding light on the untapped potential of keystroke dynamics and demonstrating the efficacy of deep learning in enhancing the precision and reliability of identification systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3