Developing a Flying Explorer for Autonomous Digital Modelling in Wild Unknowns

Author:

Zhang Naizhong1,Pan Yaoqiang2,Jin Yangwen2,Jin Peiqi2,Hu Kewei2,Huang Xiao1,Kang Hanwen2

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. College of Engineering, South China Agriculture University, Guangzhou 510070, China

Abstract

Digital modelling stands as a pivotal step in the realm of Digital Twinning. The future trend of Digital Twinning involves automated exploration and environmental modelling in complex scenes. In our study, we propose an innovative solution for robot odometry, path planning, and exploration in unknown outdoor environments, with a focus on Digital modelling. The approach uses a minimum cost formulation with pseudo-randomly generated objectives, integrating multi-path planning and evaluation, with emphasis on full coverage of unknown maps based on feasible boundaries of interest. The approach allows for dynamic changes to expected targets and behaviours. The evaluation is conducted on a robotic platform with a lightweight 3D LiDAR sensor model. The robustness of different types of odometry is compared, and the impact of parameters on motion planning is explored. The consistency and efficiency of exploring completely unknown areas are assessed in both indoor and outdoor scenarios. The experiment shows that the method proposed in this article can complete autonomous exploration and environmental modelling tasks in complex indoor and outdoor scenes. Finally, the study concludes by summarizing the reasons for exploration failures and outlining future focuses in this domain.

Funder

Naizhong Zhang’s 2023 Excellent Postdoctoral Fellow of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3