Abstract
In wireless sensor networks, due to the significance of the location information of mobile nodes for many applications, location services are the basis of many application scenarios. However, node state and communication uncertainty affect the distance estimation and position calculation of the range-based localization method, which makes it difficult to guarantee the localization accuracy and the system robustness of the distributed localization system. In this paper, we propose a distributed localization method based on anchor nodes selection and particle filter optimization. In this method, we first analyze the uncertainty of error propagation to the least-squares localization method. According to the proportional relation between localization error and uncertainty propagation, anchor nodes are selected optimally in real-time during the movement of mobile nodes. Then we use the ranging and position of the optimally selected anchor nodes to obtain the location information of the mobile nodes. Finally, the particle filter (PF) algorithm is utilized to gain the optimal estimation of the localization results. The experimental evaluation results verified that the proposed method effectively improves the localization accuracy and the robustness of the distributed system.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献