Performance Evaluation of Information Gathering from Edge Devices in a Complex of Smart Buildings

Author:

Lăcătușu FlorinORCID,Ionita Anca DanielaORCID,Lăcătușu MarianORCID,Olteanu AdrianaORCID

Abstract

The use of monitoring systems based on cloud computing has become common for smart buildings. However, the dilemma of centralization versus decentralization, in terms of gathering information and making the right decisions based on it, remains. Performance, dependent on the system design, does matter for emergency detection, where response time and loading behavior become very important. We studied several design options based on edge computing and containers for a smart building monitoring system that sends alerts to the responsible personnel when necessary. The study evaluated performance, including a qualitative analysis and load testing, for our experimental settings. From 700+ edge nodes, we obtained response times that were 30% lower for the public cloud versus the local solution. For up to 100 edge nodes, the values were better for the latter, and in between, they were rather similar. Based on an interpretation of the results, we developed recommendations for five real-world configurations, and we present the design choices adopted in our development for a complex of smart buildings.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3