Verification of Tensile Force Estimation Method for Temporary Steel Rods of FCM Bridges Based on Area of Magnetic Hysteresis Curve Using Embedded Elasto-Magnetic Sensor

Author:

Kim Won-Kyu,Kim JunkyeongORCID,Park Jooyoung,Kim Ju-WonORCID,Park SeungheeORCID

Abstract

The free cantilever method (FCM) is a bridge construction method in which the left and right segments are joined in sequence from a pier without using a bottom strut. To support the imbalance of the left and right moments during construction, temporary steel rods, upon which tensile force is applied that cannot be managed after construction, are embedded in the pier. If there is an excessive loss of tensile force applied to the steel rods, the segments can collapse owing to the unbalanced moment, which may cause personal and property damage. Therefore, it is essential to monitor the tensile force in the temporary steel rods to prevent such accidents. In this study, a tensile force estimation method for the temporary steel rods of an FCM bridge using embedded Elasto-Magnetic (EM) sensors was proposed. After the tensile force was applied to the steel rods, the change in tensile force was monitored according to the changing area of a magnetic hysteresis curve, as measured by the embedded EM sensors. To verify the field applicability of the proposed method, the EM sensors were installed in an FCM bridge pier under construction. The three sensors were installed in conjunction with a sheath tube, and the magnetic hysteresis curve was measured over nine months. Temperature data from the measurement period were used to compensate for the error due to daily temperature fluctuations. The estimated tensile force was consistent with an error range of ±4% when compared with the reference value measured by the load cell. Based on the results of this experiment, the applicability of the proposed method was demonstrated.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3