High-Accuracy Relative Pose Measurement of Noncooperative Objects Based on Double-Constrained Intersurface Mutual Projections

Author:

Gan Yu,Li Guangmin,Liu Guodong,Lu Binghui

Abstract

Relative pose measurement for noncooperative objects is an important part of 3D shape recognition and motion tracking. The methods based on scanning point clouds have better environmental adaptability and stability than image-based methods. However, the discrete points obtained from a continuous surface are sparse, which leads to point-to-point dislocations in the overlapping area and seriously reduces the accuracy. Therefore, this paper proposed a relative-pose-measurement algorithm based on double-constrained intersurface mutual projections. First, the initial corresponding set was constructed using mutual projections between the areas with similar feature descriptors, and then the final corresponding set was determined through the rigid-transformation-consistency constraint to improve the accuracy of the matchings and achieve a high-accuracy relative pose measurement. In the Stanford dataset, the rotation error and translation error were reduced by 19.3% and 13.4%, respectively. Furthermore, based on the proposed evaluation method, which separated the error of the pose-measurement algorithm from that of the instrument, the experiments were carried out with a self-made swept-frequency interferometer. The rotation error was reduced by 39.8%, and the surface deviation was reduced by 4.9%, which further proved the advancement of the method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3