Abstract
The growing concern about climate change has led to the rise of carbon cycle research. Forest cutting planning affects the carbon cycle due to the carbon sequestration function of forests. In this work, we propose a planning model for determining the regeneration cutting age of forests to optimize carbon sequestration and improving the associated economic and ecological benefits. We first built a model based on the carbon sequestration consumption of forest products and forest carbon sequestration to predict the change in forest carbon sequestration over time. The accuracy of the model was verified with forest data from the Great Khingan mountains. Furthermore, we added in economic and ecological factors to build an improved model, which was also applied to the Great Khingan forest. The improved regeneration cutting ages were calculated as 65, 134, 123, 111 and 73 years for white birch, larch, Scots pine, oak, and poplar trees for natural forests, whereas the ages were 34, 65, 64, 77 and 37 years for planted forests, respectively. It can be predicted that the total carbon sequestration in the Great Khingan forests will accumulate to 974.80 million tons after 100 years. The results of this study can provide useful guidance for local governments to develop a sustainable timeline for forest harvesting to optimize carbon sequestration and improve the associated economic and ecological benefits.
Funder
Education Department of Hunan Province
National Natural Science Foundation of China
Reference95 articles.
1. The effect of forest management on forest carbon sequestration and its improvement measures;Xu;Mod. Agric. Technol.,2013
2. Analysis on the importance of perfecting the forest harvesting management system;Zhao;Biotech World,2012
3. Compiled by the Forest Resources Management Department of the State Forestry Administration. Forest Harvesting Operation Regulations;Zhang,2007
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献