An Electric Signal Conduction Characterization Model (ESCCM) for Establishing an Effective Poplar Regenerative System

Author:

Zhang Yue,Li Qing,Sen Meng,Han XiaoORCID,Wang Xiaoling,Zhou Yangyan

Abstract

The poplar is a model system for research on wood plant biology. An establishment of an efficient poplar regeneration system (PRS) plays a key role in the molecular breeding of wood plants. At present, most established PRSs are based on orthogonal experiments of previous research data. However, such an experiment is complex, time-consuming, and inefficient for various poplar subspecies. Therefore, an efficient solution to the establishment of PRSs is urgent. In this study, the triploid white poplar (Populus tomentosa ‘YiXianCiZhu B385′) was used as an experimental material to establish a leaf-based regeneration system. Firstly, different concentrations of hormones were added into the medium for the differentiation, stretching, and rooting of leaves, and the electrical conductivity of the medium was measured by a conductivity meter. Secondly, the optimal hormone concentrations for differentiation, stretching, and rooting were obtained by wavelet analysis. Finally, the Electrical Signal Conduction Characterization Model (ESCCM) of different hormone concentrations in the differentiation, stretching, and rooting of poplars was established. The result showed that the ESCCM improves the efficiency of PRSs, and this provides new insight and theory in molecular breeding. The ESCCM also provides the possibility of an automated establishment of a PRS.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3