Multi-Scale Modeling of Residual Stresses Evolution in Laser Powder Bed Fusion of Inconel 625

Author:

Balbaa MohamedORCID,Elbestawi Mohamed

Abstract

Laser powder bed fusion exhibits many advantages for manufacturing complex geometries from hard to machine alloys such as IN625. However, a major drawback is the formation of high tensile residual stresses, and the complex relationship between the process parameters and the residual stresses has not been fully investigated. The current study presents multi-scale models to examine the variation of process parameters on melt pool dimensions, cyclic temperature evolutions, cooling rate, and cyclic stress generation and how they affect the stress end state. In addition, the effect of the same energy density, which is often overlooked, on the generated residual stresses is investigated. Multi-level validation is performed based on melt pool dimensions, temperature measurements with a two-color pyrometer, and finally, in-depth residual stress measurement. The results show that scan speed has the strongest effect on residual stresses, followed by laser power and hatch spacing. The results are explained in light of the non-linear temperature evolution, temperature gradient, and cooling rate during laser exposure, cooling time, and the rate during recoating time.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference75 articles.

1. ISO/ASTM52900-15, Standard Terminology for Additive Manufacturing—General Principles—Terminology; ASTM International: West Conshohocken, PA, USAwww.astm.org

2. Additive manufacturing of metallic components – Process, structure and properties

3. SLM tooling for die casting with conformal cooling channels

4. Case study: Additive manufacturing of aerospace brackets;Dehoff;Adv. Mater. Process.,2013

5. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3