Abstract
This paper describes the dynamic stability evaluation of a constrained-motion dynamometer (CMD) with passive damping. The CMD’s flexure-based design offers an alternative to traditional piezoelectric cutting force dynamometers, which can exhibit adverse effects of the complex structural dynamics on the measurement accuracy. In contrast, the CMD system’s structural dynamics are nominally single degree of freedom and are conveniently altered by material selection, flexure element geometry, and element arrangement. In this research, a passive damping approach is applied to increase the viscous damping ratio and, subsequently, the stability limit. Cutting tests were completed and the in situ CMD displacement and velocity signals were sampled at the spindle rotating frequency. The periodic sampling approach was used to determine if the milling response was synchronous with the spindle rotation (stable) or not (chatter) by constructing Poincaré maps for both experiment and prediction (time-domain simulation). It was found that the viscous damping coefficient was increased by 130% and the critical stability limit was increased from 4.3 mm (no damping) to 15.4 mm (with damping).
Funder
Department of Energy and Environment
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Reference47 articles.
1. Machining Dynamics: Frequency Response to Improved Productivity;Schmitz,2009
2. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design;Altintas,2012
3. Manufacturing Processes and Equipment;Tlusty,2000
4. A Critical Review of Sensors for Unmanned Machining
5. Advancing Cutting Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献