Advanced Processing and Machining of Tungsten and Its Alloys

Author:

Omole SamuelORCID,Lunt AlexanderORCID,Kirk Simon,Shokrani Alborz

Abstract

Tungsten is a refractory metal with the highest melting temperature and density of all metals in this group. These properties, together with the high thermal conductivity and strength, make tungsten the ideal material for high-temperature structural use in fusion energy and other applications. It is widely agreed that the manufacture of components with complex geometries is crucial for scaling and optimizing power plant designs. However, there are challenges associated with the large-scale processing and manufacturing of parts made from tungsten and its alloys which limit the production of these complex geometries. These challenges stem from the high ductile-to-brittle transition temperature (DBTT), as well as the strength and hardness of these parts. Processing methods, such as powder metallurgy and additive manufacturing, can generate near-net-shaped components. However, subtractive post-processing techniques are required to complement these methods. This paper provides an in-depth exploration and discussion of different processing and manufacturing methods for tungsten and identifies the challenges and gaps associated with each approach. It includes conventional and unconventional machining processes, as well as research on improving the ductility of tungsten using various methods, such as alloying, thermomechanical treatment, and grain structure refinement.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference136 articles.

1. World Energy Outlook 2019https://www.iea.org/reports/world-energy-outlook-2019

2. Opportunities and challenges for a sustainable energy future

3. Towards Net Zero: How the World’s Largest Companies Report on Climate Risk and Net Zero Transition;Threlfall,2020

4. Emissions Gap Report 2020,2020

5. Alternative energy technologies

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3