Advancing Phishing Email Detection: A Comparative Study of Deep Learning Models

Author:

Altwaijry Najwa1ORCID,Al-Turaiki Isra1ORCID,Alotaibi Reem2,Alakeel Fatimah3

Affiliation:

1. Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11653, Saudi Arabia

2. Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia

3. Department of Computer Science and Engineering, College of Applied Studies and Community Service, King Saud University, Riyadh 11495, Saudi Arabia

Abstract

Phishing is one of the most dangerous attacks targeting individuals, organizations, and nations. Although many traditional methods for email phishing detection exist, there is a need to improve accuracy and reduce false-positive rates. Our work investigates one-dimensional CNN-based models (1D-CNNPD) to detect phishing emails in order to address these challenges. Additionally, further improvement is achieved with the augmentation of the base 1D-CNNPD model with recurrent layers, namely, LSTM, Bi-LSTM, GRU, and Bi-GRU, and experimented with the four resulting models. Two benchmark datasets were used to evaluate the performance of our models: Phishing Corpus and Spam Assassin. Our results indicate that, in general, the augmentations improve the performance of the 1D-CNNPD base model. Specifically, the 1D-CNNPD with Bi-GRU yields the best results. Overall, the performance of our models is comparable to the state of the art of CNN-based phishing email detection. The Advanced 1D-CNNPD with Leaky ReLU and Bi-GRU achieved 100% precision, 99.68% accuracy, an F1 score of 99.66%, and a recall of 99.32%. We observe that increasing model depth typically leads to an initial performance improvement, succeeded by a decline. In conclusion, this study highlights the effectiveness of augmented 1D-CNNPD models in detecting phishing emails with improved accuracy. The reported performance measure values indicate the potential of these models in advancing the implementation of cybersecurity solutions to combat email phishing attacks.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3