Abstract
Background: Silent atrial fibrillation (SAF) is common and is associated with poor outcomes. Aims: to study the risk factors for AF and SAF in the elderly (≥65 years) general population and to develop a risk stratification model for predicting SAF. Methods: Continuous ECG monitoring was performed for up to 30 days using a vest-based system in a cohort from NOMED-AF, a cross-sectional study based on a nationwide population sample. The independent risk factors for AF and SAF were determined using multiple logistic regression. ROC analysis was applied to validate the developed risk stratification score. Results: From the total cohort of 3014 subjects, AF was diagnosed in 680 individuals (mean age, 77.5 ± 7.9; 50.1% men) with AF, and, of these, 41% had SAF. Independent associations with an increased risk of AF were age, male gender, coronary heart disease, thyroid diseases, prior ischemic stroke or transient ischemic attack (ICS/TIA), diabetes, heart failure, chronic kidney disease (CKD), obesity, and NT-proBNP >125 ng/mL. The risk factors for SAF were age, male gender, ICS/TIA, diabetes, heart failure, CKD, and NT-proBNP >125 ng/mL. We developed a clinical risk scale (MR-DASH score) that achieved a good level of prediction in the derivation cohort (AUC 0.726) and the validation cohort (AUC 0.730). Conclusions: SAF is associated with various clinical risk factors in a population sample of individuals ≥65 years. Stratifying individuals from the general population according to their risk for SAF may be possible using the MR-DASH score, facilitating targeted screening programs of individuals with a high risk of SAF.
Funder
Narodowe Centrum Badań i Rozwoju