Ternary Ni-Ce-Mg-O Composites: In-Depth Optical Spectroscopy Study and Catalytic Performance in CO Oxidation

Author:

Veselov Grigory B.1ORCID,Stoyanovskii Vladimir O.1ORCID,Vedyagin Aleksey A.1ORCID

Affiliation:

1. Boreskov Institute of Catalysis, 5 Lavrentyev Avenue, 630090 Novosibirsk, Russia

Abstract

In the present work, ternary Ni-Ce-Mg-O composites containing various amounts of NiO and CeO2 were synthesized via a sol-gel approach. Aqueous solutions of cerium and nickel nitrates were introduced at the stage of hydrolysis of magnesium methoxide, which allowed for avoiding the use of expensive organic precursors. It was revealed that the properties of the composites were defined by the complex interactions between NiO, CeO2, and MgO components. In order to perform an in-depth characterization of the prepared samples, diffuse reflectance UV–vis and Raman spectroscopies were applied. According to the results of these methods, Mg2+ ions did not substitute Ce4+ ions in the CeO2 lattice. However, in the case of the Ni-containing samples, approximately 2–3% of the Ce4+ ions were substituted by Ni2+, thus resulting in the formation of vacancies in the CeO2. The strong interaction of NiO with MgO predictably resulted in the formation of NixMg1−xO solid solutions. When the NiO content in the sample was 20 wt%, the composition of the formed solid solution was estimated to be Ni0.60Mg0.40O. In addition, the presence of CeO2 affected the texture of the ternary composites, thus leading to a slight decrease in the specific surface area. The catalytic performance of the Ni-Ce-Mg-O composites was examined in the CO oxidation reaction under prompt thermal aging conditions. The choice of reaction conditions was due to a high sensitivity of the CO oxidation response toward the available metal surface area and possible metal-support interactions.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3