Combined Effects of Solar Radiation and High Vacuum on the Properties of Graphene/Polysiloxane Nanocomposites in Simulated Space Environment

Author:

Toto Elisa1ORCID,Laurenzi Susanna2ORCID,Paris Claudio3ORCID,Santonicola Maria Gabriella1ORCID

Affiliation:

1. Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy

2. Department of Astronautical Electrical and Energy Engineering, Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy

3. School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy

Abstract

Polymer–matrix composites (PMCs) filled with graphene nanoplatelets (GNP) are ultralightweight combined with the ability to perform a wide range of functions. These materials are interesting for many applications in space environments, including the monitoring of degradation caused by radiation exposure. Recently, the growing interest in outer space exploration, by both unmanned probes and manned space vehicles, has encouraged research to make great strides to facilitate missions, with one goal being to monitor and limit the impact of highly damaging radiation. With this perspective, we investigate the effects of simulated space conditions on the physico-chemical, morphological, and mechanical properties of elastomeric PMCs made from a polydimethylsiloxane (PDMS) matrix embedding pristine GNP or a hybrid graphene/DNA filler with high sensitivity to ionising radiation. An analysis of the PMC stability, outgassing, and surface modification is reported for samples exposed to solar radiation under high vacuum (HV, 10−6 mbar). The experimental results highlight the mechanical stability of the PMCs with DNA-modified GNP under solar radiation exposure, whereas the surface morphology is highly affected. On the contrary, the surface properties of PMCs with pristine GNP do not vary significantly under simulated space conditions.

Funder

Italian Ministry of University and Research

Sapienza University of Rome

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3