The Antioxidant Protective Effect of Iris-Squid-Derived Protein Hydrolysates (>10 kDa) in HSF Fibroblast Cells Induced by H2O2

Author:

Li Na1,Diao Xiaozhen1ORCID,Pu Xinyi1,Tang Pengjie1,Elango Jeevithan123ORCID,Wu Wenhui145ORCID

Affiliation:

1. Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China

2. Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain

3. Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India

4. Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China

5. Putuo Branch of International Combined Research Center for Marine Biological Sciences, Zhoushan 316104, China

Abstract

One of the supporting factors behind the biomolecules recently used in anti-aging and skin nourishment is their antioxidant properties. Hydrogen peroxide (H2O2) is a well-known small molecule oxidant that induces apoptosis in human skin fibroblast (HSF) cells through the synthesis of inflammatory cytokines. Hence, this study aimed to investigate the antioxidant activities of protein hydrolysates prepared from Iris squid (Symplectoteuthis oualaniensis) (PHCSO) in vitro. Firstly, two peptides with MWs more than 10 kDa (PHCSO-1) and less than 10 kDa (PHCSO-2) were obtained through ultrafiltration and were characterized (molecular pattern amino acid composition, FTIR) before testing the antioxidant activity (DPPH radical scavenging activity and hydroxyl radical scavenging activity). Then, the effects of PHCSOs on HSF cell viability, H2O2-induced oxidative stress model of HSF cells, ROS fluorescence staining, level of cytokines (IL-1, IL-6 and TNF-α) and cellular antioxidant properties (SOD activity, CAT activity, GSH and MDA content) were investigated. The cell morphology was examined through fluorescence staining and inflammatory factors and antioxidant activity analysis showed that superior properties were observed in PHCSO-2 peptide compared to PHCSO-1 and PHCSO. Among the peptides, PHCSO-2 (5 mg/mL) had higher DPPH and hydroxyl radical scavenging activities of 58% and 57%, respectively. On the other hand, the PHCSO-2 treatment reduced the TNF-α activity by 25%, which indicated the effective protection of PHCSO-2 from oxidative stress damage in the skin. These findings proved that peptides with less than 10 kDa were more suitable for therapeutic purposes, with good antioxidant properties. Accordingly, the protein hydrolysate from S. oualaniensis proved to be an excellent marine-based antioxidant peptide, which could be applied in cosmetic, pharmaceutical and food industries.

Funder

National Natural Science Foundation of China

Research Fund for International Young Scientists

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3