Thermal and Mechanical Properties of Recyclable Composites Prepared from Bio-Olefins and Industrial Waste

Author:

Sauceda-Oloño Perla Y.1ORCID,Borbon-Almada Ana C.2ORCID,Gaxiola Martin2,Smith Ashlyn D.1,Tennyson Andrew G.13,Smith Rhett C.1ORCID

Affiliation:

1. Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, Clemson, SC 29634, USA

2. Departamento de Ingenieria Civil y Minas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico

3. Department Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA

Abstract

Ordinary Portland Cement (OPC) production consumes tremendous amounts of fresh water and energy and releases vast quantities of CO2 into the atmosphere. Not only would an alternative to OPC whose production requires no water, releases little CO2, and consumes less energy represent a transformative advance in the pursuit of industrial decarbonization, but the greater availability of safe drinking water would lead to significantly improved public health, particularly among vulnerable populations most at risk from contaminated water supply. For any OPC alternative to be adopted on any meaningful scale, however, its structural capabilities must meet or exceed those of OPC. An inverse vulcanization of brown grease, sunflower oil, and elemental sulfur (5:5:90 weight ratio) was successfully modified to afford the high-sulfur-content material SunBG90 in quantities > 1 kg, as was necessary for standardized ASTM and ISO testing. Water absorption (ASTM C140) and thermal conductivity (ISO 8302) values for SunBG90 (<1 wt% and 0.126 W·m−1·K−1, respectively) were 84% and 94% lower than those for OPC, respectively, suggesting that SunBG90 would be more resistant against freeze-thaw and thermal stress damage than OPC. Consequently, not only does SunBG90 represent a more environmentally friendly material than OPC, but its superior thermomechanical properties suggest that it could be a more environmentally robust material on its own merits, particularly for outdoor structural applications involving significant exposure to water and seasonal or day/night temperature swings.

Funder

The National Science Foundation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3