Exploring the Thermophysical Properties of the Thermal Conductivity of Pigmented Polymer Matrix Composites with Barium Titanate: A Comparative Numerical and Experimental Study

Author:

Belhaouzi Abdessamad12,Laaouidi Houda3,Zyade Souad12,Raji Yosra12ORCID,Halimi Youssef14,Tahiri Mohamed4

Affiliation:

1. Laboratory of Process and Environmental Engineering, Higher School of Technology of Casablanca, Hassan II University of Casablanca, Casablanca 20200, Morocco

2. Laboratory of Materials Engineering for Environment and Valorization, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20200, Morocco

3. ENSTA Bretagne, IRDL, UMR CNRS 6027, F-29200 Brest, France

4. Laboratory of Geosciences, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Casablanca 20200, Morocco

Abstract

This research paper focuses on investigating the thermal conductivity behavior of polymer matrix composite materials, specifically those composed of PSU and BaTiO3, both experimentally and numerically. The thermal conductivity of composites has been studied using a variety of theoretical and semi-empirical methods. However, in cases where the filler concentration is minimal, these models provide a superior estimate. To numerically resolve the thermal heat transfer for an elementary cell, the finite element method is employed in this study. The impact of contact resistance, barium titanate percentage, and quenching temperature on the composite’s effective thermal conductivity and dynamic behavior is given consideration. The results demonstrate that the suggested numerical model is in good agreement with experimental measurements as well as Hatta–Taya and Hashin–Shtrikman’s analytical models. The results provide significant insight into the thermal conductivity behavior of composites, which can inform the development of more effective thermal management solutions for composite materials. Effective thermal management is critical for the successful application of polymer matrix composite materials in various engineering applications. Thermal conductivity is a key factor in thermal management and is influenced by factors such as the concentration of filler particles, their shape, size, and distribution, and the matrix material’s properties.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3