The Influence of Nitrogen Flow Rate on the Structure and Properties of Mo-Hf-Y-Si-B-N Coatings

Author:

Kiryukhantsev-Korneev Philipp1ORCID,Sytchenko Alina1ORCID,Chudarin Fedor1,Senatulin Boris2,Levashov Evgeny1ORCID

Affiliation:

1. Laboratory “In Situ Diagnosis of Structural Transformations” of the Scientific—Educational Center of SHS, National University of Science and Technology MISIS, 119049 Moscow, Russia

2. Joint Research Center «Material Science and Metallurgy», National University of Science and Technology MISIS, 119049 Moscow, Russia

Abstract

This work is devoted to the production of Mo-Hf-Y-Si-B-N coatings using magnetron sputtering with varying N2 flow rate; the analysis of magnetron discharge plasma; and the investigation of the structure, and optical, mechanical, and tribological characteristics, as well as crack resistance and oxidation resistance, of the coatings. The results show that Mo-Hf-Y-Si-B-N coatings were characterized by a dense, homogeneous structure. The non-reactive coatings had a maximum growth rate of 270 nm/min. An increase in the flow rate of N2 from 0 to 37.5 sccm led to a decrease in the growth rate by 5.4 times. Mo-Hf-Y-Si-B-N coatings were X-ray amorphous. In non-reactive coatings, the presence of Mo-Si and Mo-B bonds was revealed. The introduction of nitrogen contributed to the formation of an additional Si-N bond, an increase in the proportion of which led to an increase in transmittance. The Mo-Hf-Y-Si-B coating was characterized by a hardness value of 14 GPa. The maximum hardness of 16 GPa was observed in coatings obtained at nitrogen flow rates of 12.5 and 25.0 sccm. A further increase in the consumption of N2 to 37.5 sccm led to a decrease in hardness by 38%. The coating obtained at a flow rate of 25 sccm N2 was characterized by maximum elastic recovery of 57%, elastic strain to failure of 0.098, and resistance to plastic deformation of 0.157 GPa. An increase in nitrogen flow rate from 0 to 12.5 sccm contributed to a decrease in the wear rate of coatings under sliding friction conditions by 40%. The non-reactive Mo-Hf-Y-Si-B coating had the best oxidation resistance at 1000 °C.

Funder

Russian Science Foundation

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3