Comparison of Immune Responses between Inactivated and mRNA SARS-CoV-2 Vaccines Used for a Booster Dose in Mice

Author:

Luan Ning1ORCID,Cao Han1,Wang Yunfei1,Lin Kangyang1,Hu Jingping1,Liu Cunbao1ORCID

Affiliation:

1. Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China

Abstract

A large amount of real-world data suggests that the emergence of variants of concern (VOCs) has brought new challenges to the fight against SARS-CoV-2 because the immune protection elicited by the existing coronavirus disease 2019 (COVID-19) vaccines was weakened. In response to the VOCs, it is necessary to advocate for the administration of booster vaccine doses to extend the effectiveness of vaccines and enhance neutralization titers. In this study, the immune effects of mRNA vaccines based on the WT (prototypic strain) and omicron (B1.1.529) strains for use as booster vaccines were investigated in mice. It was determined that with two-dose inactivated vaccine priming, boosting with mRNA vaccines could elevate IgG titers, enhance cell-mediated immunity, and provide immune protection against the corresponding variants, but cross-protection against distinct strains was inferior. This study comprehensively describes the differences in the mice boosted with mRNA vaccines based on the WT strain and the omicron strain, a harmful VOC that has resulted in a sharp rise in the number of infections, and reveals the most efficacious vaccination strategy against omicron and future SARS-CoV-2 variants.

Funder

Yunnan Fundamental Research Projects

National Natural Science Foundation of China

National Key R&D Program of China

Special Biomedicine Projects of Yunnan Province

Major Science and Technology Special Projects of Yunnan Province

Fundamental Research Funds for the Central Universities

Training of High-Level Health Technical Personnel in Yunnan Province

High-Level Scientific and Technological Talents Selection Special Project of Yunnan Province

CAMS Innovation Fund for Medical Sciences

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3