Application of AMOGWO in Multi-Objective Optimal Allocation of Water Resources in Handan, China

Author:

Li Su,Yan ZhihongORCID,Sha JinxiaORCID,Gao Jing,Han Bingqing,Liu BinORCID,Xu Dan,Chang Yifan,Han YuhangORCID,Xu Zhiheng,Sun Bolun

Abstract

The reasonable allocation of water resources using different optimization technologies has received extensive attention. However, not all optimization algorithms are suitable for solving this problem because of its complexity. In this study, we applied an ameliorative multi-objective gray wolf optimizer (AMOGWO) to the problem. For AMOGWO, which is based on the multi-objective gray wolf optimizer, we improved the distance control parameter calculation method, added crowding degree for the archive, and optimized the selection mechanism for leader wolves. Subsequently, AMOGWO was used to solve the multi-objective optimal allocation of water resources in Handan, China, for 2035, with the maximum economic benefit and minimum social water shortage used as objective functions. The optimal results obtained indicate a total water demand in Handan of 2740.43 × 106 m3, total water distribution of 2442.23 × 106 m3, and water shortage of 298.20 × 106 m3, which is consistent with the principles of water resource utilization in Handan. Furthermore, comparison results indicate that AMOGWO has substantially enhanced convergence rates and precision compared to the non-dominated sorting genetic algorithm II and the multi-objective particle swarm optimization algorithm, demonstrating relatively high reliability and applicability. This study thus provides a new method for solving the multi-objective optimal allocation of water resources.

Funder

Postgraduate Innovation Ability Funding Project of Hebei Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3