Abstract
The reasonable allocation of water resources using different optimization technologies has received extensive attention. However, not all optimization algorithms are suitable for solving this problem because of its complexity. In this study, we applied an ameliorative multi-objective gray wolf optimizer (AMOGWO) to the problem. For AMOGWO, which is based on the multi-objective gray wolf optimizer, we improved the distance control parameter calculation method, added crowding degree for the archive, and optimized the selection mechanism for leader wolves. Subsequently, AMOGWO was used to solve the multi-objective optimal allocation of water resources in Handan, China, for 2035, with the maximum economic benefit and minimum social water shortage used as objective functions. The optimal results obtained indicate a total water demand in Handan of 2740.43 × 106 m3, total water distribution of 2442.23 × 106 m3, and water shortage of 298.20 × 106 m3, which is consistent with the principles of water resource utilization in Handan. Furthermore, comparison results indicate that AMOGWO has substantially enhanced convergence rates and precision compared to the non-dominated sorting genetic algorithm II and the multi-objective particle swarm optimization algorithm, demonstrating relatively high reliability and applicability. This study thus provides a new method for solving the multi-objective optimal allocation of water resources.
Funder
Postgraduate Innovation Ability Funding Project of Hebei Province
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献