Statistical Optimization by the Response Surface Methodology of Direct Recycled Aluminum-Alumina Metal Matrix Composite (MMC-AlR) Employing the Metal Forming Process

Author:

Ahmad AzlanORCID,Lajis Mohd Amri,Yusuf Nur Kamilah,Ab Rahim Syaiful Nizam

Abstract

In this study, the response surface methodology (RSM) and desirability function (DF) were utilized to optimize the recycling conditions of aluminum (AA6061) chips, in the presence of particulate alumina (Al2O3), to obtain a metal matrix composite of recycled aluminum (MMC-AlR) using hot press forging processes. The effects of temperature (430–530 °C) and holding time (60–120 min) were investigated. The introduction of 2.0 wt. % of Al2O3 to the aluminum matrix was based on preliminary research and some pilot tests. This study employed the 2k factorial design of experiments that should satisfy the operating temperatures (T) of 430 °C and 530 °C with holding times (t) of 60 min and 120 min. The central composite design (CCD) was utilized for RSM with the axial and center point to evaluate the responses to the ultimate tensile strength (UTS), elongation to failure (ETF), and microhardness (MH). Based on RSM, with the desirability of 97.6%, the significant parameters T = 530 °C and t = 120 min were suggested to yield an optimized composite performance with UTS = 317.99 MPa, ETF = 20.45%, and MH = 86.656 HV. Three confirmation runs were performed based on the suggested optimum parameters, and the error revealed was less than 25%. The mathematical models suggested by RSM could adequately describe the MMC-AlR responses of the factors being investigated.

Funder

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference45 articles.

1. Integrated Assessment of Primary and Secondary Aluminium Production;Rombach,1998

2. Global Aluminium Recycling: A Cornerstone of Sustainable Development,2009

3. Life Cycle Assessment on the Effects of Parameter Setting in Direct Recycling Hot Press Forging of Aluminum

4. Metal matrix composites;Chawla,2012

5. An introduction to Metal Matrix Composites;Clyne,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3