The Use of Ground Coal Bottom Ash/Slag as a Cement Replacement for Sustainable Concrete Infrastructure

Author:

Poudel Sandip1,Menda Samrawit2,Useldinger-Hoefs Joe3,Guteta Lidya E.4,Dockter Bruce4,Gedafa Daba S.4

Affiliation:

1. Red River Valley Alliance LLC, 4816 Amber Valley Pkwy S, Fargo, ND 58102, USA

2. Bingham Engineering Consultants, 13416 N. 32nd St. Suite 100, Phoenix, AZ 85032, USA

3. Michael Baker International, 120 South 6th St. Unit 1710, Minneapolis, MN 55402, USA

4. Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, ND 58202, USA

Abstract

Cement production requires considerable energy and natural resources, severely impacting the environment due to harmful gas emissions. Coal bottom ash (CBA) and coal boiler slag (CBS), byproducts of coal-fired powerplants having pozzolanic properties, can be mechanically ground and replace cement in concrete, which reduces waste in landfills, preserves natural resources, and reduces health hazards. This study was performed to determine the optimum cement replacement amount of ground CBA (GCBA) and ground CBS (GCBS) in concrete, which was 10% for GCBA and 5% for GCBS. GCBA-based concrete exhibited superior tensile strength, modulus of elasticity, and durability compared to the control. In the Rapid Chloride Penetration Test, 10% GCBA concrete resulted in 2026 coulombs at 56 days, compared to 3405 coulombs for the control, indicating more resistance to chloride penetration. Incorporating 2.5% nanoclay in GCBA-based concrete increased the optimum GCBA content by 5%, and the compressive strength of 15% GCBA concrete increased by 4 MPa. The mortar consisting of the finest GCBA(L1) having Blaine fineness of 3072 g/cm2 yielded the highest compressive strength (32.7 MPa). The study discovered that the compressive strength of GCBA and GCBS-based mortars increases with fineness, and meeting the recommended fineness limit in ASTM C618 enhances concrete or mortar properties.

Funder

North Dakota Industrial Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3