Microstructure-Based Modeling of Deformation and Damage Behavior of Extruded and Additively Manufactured 316L Stainless Steels

Author:

Wang Huai1ORCID,Lee Ho-Won2ORCID,Tran Minh Tien2,Kim Dong-Kyu3

Affiliation:

1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China

2. Department of Materials AI & Big Data, Korea Institute of Materials Science, Changwon 51508, Republic of Korea

3. Department of Mechanical & Aerospace Engineering, Konkuk University, Seoul 05029, Republic of Korea

Abstract

In this study, we investigated the micromechanical deformation and damage behavior of commercially extruded and additively manufactured 316L stainless steels (AMed SS316L) by combining experimental examinations and crystal plasticity modeling. The AMed alloy was fabricated using the laser powder bed fusion (LPBF) technique with an orthogonal scanning strategy to control the directionality of the as-fabricated material. Optical microscopy and electron backscatter diffraction measurements revealed distinct grain morphologies and crystallographic textures in the two alloys. Uniaxial tensile test results suggested that the LPBFed alloy exhibited an increased yield strength, reduced elongation, and comparable ultimate tensile strength in comparison to those of the extruded alloy. A microstructure-based crystal plasticity model was developed to simulate the micromechanical deformation behavior of the alloys using representative volume elements based on realistic microstructures. A ductile fracture criterion based on the microscopically dissipated plastic energy on a slip system was adopted to predict the microscopic damage accumulation of the alloys during plastic deformation. The developed model could accurately predict the stress–strain behavior and evolution of the crystallographic textures in both the alloys. We reveal that the increased yield strength in the LPBFed alloy, compared to that in the extruded alloy, is attributed to the higher as-manufactured dislocation density and the cellular subgrain structure, resulting in a reduced elongation. The presence of annealing twins and favorable texture in the extruded alloy contributed to its excellent elongation, along with a higher hardening rate owing to twin–dislocation interactions during plastic deformation. Moreover, the grain morphology and defect state (e.g., dislocations and twins) in the initial state can significantly affect strain localization and damage accumulation in alloys.

Funder

National Research Foundation of Korea

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3