Dry Electrode Processing Technology and Binders

Author:

Zhang Kaiqi1,Li Dan2,Wang Xuehan1ORCID,Gao Jingwan2,Shen Huilin1,Zhang Hao1,Rong Changru2,Chen Zheng1ORCID

Affiliation:

1. Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China

2. National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China

Abstract

As a popular energy storage equipment, lithium-ion batteries (LIBs) have many advantages, such as high energy density and long cycle life. At this stage, with the increasing demand for energy storage materials, the industrialization of batteries is facing new challenges such as enhancing efficiency, reducing energy consumption, and improving battery performance. In particular, the challenges mentioned above are particularly critical in advanced next-generation battery manufacturing. For batteries, the electrode processing process plays a crucial role in advancing lithium-ion battery technology and has a significant impact on battery energy density, manufacturing cost, and yield. Dry electrode technology is an emerging technology that has attracted extensive attention from both academia and the manufacturing industry due to its unique advantages and compatibility. This paper provides a detailed introduction to the development status and application examples of various dry electrode technologies. It discusses the latest advancements in commonly used binders for different dry processes and offers insights into future electrode manufacturing.

Funder

Major Science and Technology Projects for Independent Innovation of China, FAW Group Co., Ltd.

National Natural Science Foundation of China

Jilin Provincial Science and Technology Development Project of China

Jilin Provincial Department of Education Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3