Study on Fracture Characteristics of Layered Sandstone under Asymmetric Loading

Author:

Hao Ruiqing12ORCID,Zhou Yuguo1ORCID,Liao Lin1,Teah Nathan Saye1,Xue Wanwen1,Liao Zhiling1

Affiliation:

1. Department of Underground Engineering, College of Mining Engineering, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan 030024, China

2. Shanxi Coal Import and Export Group Co., Ltd., Taiyuan 030032, China

Abstract

In engineering practice, layered rock masses often display obvious anisotropy while deforming and failing, and the failure mode directly impacts the engineering construction stability. In this study, the fracture failure load, fracture toughness, crack deflection angle, and failure mode of a layered rock mass under different fracture modes were analyzed by utilizing improved asymmetric semi-circular disc specimens. According to the constitutive model of transversely isotropic materials, the maximum tensile stress (MTS), maximum energy release rate (MERR), and maximum strain energy density (MSED) calculation formulas were modified, and the calculation formulas of the three prediction criteria under anisotropic materials were derived. The calculation results were compared with the experimental results. The results show that the fracture toughness and crack deflection angle were significantly affected by the weak bedding plane. As a result of applying the MTS criterion, the results are closer to the experimental results, providing a solid foundation for engineering deformation, failure, and fracture analyses.

Funder

Fundamental Research Program of Shanxi Province

Shanxi Scholarship Council of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3