Comprehensive Assessment of Cyclic Fatigue Strength in Five Multiple-File Nickel–Titanium Endodontic Systems

Author:

Martins Jorge N. R.1234ORCID,Silva Emmanuel J. N. L.567ORCID,Marques Duarte1234ORCID,Braz Fernandes Francisco M.8,Versiani Marco A.9ORCID

Affiliation:

1. Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal

2. LIBPhys-FCT UID/FIS/04559/2013, 1600-277 Lisboa, Portugal

3. Grupo de Investigação em Bioquimica e Biologia Oral (GIBBO), Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), 1600-277 Lisboa, Portugal

4. Centro de Estudos de Medicina Dentária Baseada na Evidência (CEMDBE), 1600-277 Lisboa, Portugal

5. Department of Endodontics, School of Dentistry, Grande Rio University (UNIGRANRIO), Rio de Janeiro 21210-623, Brazil

6. Department of Endodontics, Fluminense Federal University, Rio de Janeiro 24220-900, Brazil

7. Department of Endodontics, Rio de Janeiro University (UERJ), Rio de Janeiro 20550-013, Brazil

8. CENIMAT/I3N, Department of Materials Science, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal

9. Dental Specialty Center, Brazilian Military Police, Belo Horizonte 30350-190, Brazil

Abstract

The resistance of nickel–titanium endodontic instruments against cyclic fatigue failure remains a significant concern in clinical settings. This study aimed to assess the cyclic fatigue strength of five nickel–titanium rotary systems, while correlating the results with the instruments’ geometric and metallurgical characteristics. A total of 250 new instruments (sizes S1/A1, S2/A2, F1/B1, F2/B2, F3/B3) from ProTaper Gold, ProTaper Universal, Premium Taper Gold, Go-Taper Flex, and U-Files systems underwent mechanical testing. Prior to experimental procedures, all instruments were meticulously inspected to identify irregularities that could affect the investigation. Using a stereomicroscope, design characteristics such as the number of spirals, length, spirals per millimeter, and average helical angle of the active blade were determined. The surface finishing characteristics of the instruments were examined using a scanning electron microscope. Differential scanning calorimetry was employed to establish the instruments’ phase transformation temperatures, while energy-dispersive X-ray spectroscopy was utilized to analyze the elemental composition of the alloy. The instruments were subjected to cyclic fatigue testing within a stainless steel non-tapered artificial canal featuring a 6 mm radius and 86 degrees of curvature. Appropriate statistical tests were applied to compare groups, considering a significance level of 0.05. The assessed design characteristics varied depending on the instrument type. The least irregular surface finishing was observed in U-Files and Premium Taper Gold files, while the most irregular surface was noted in Go-Taper Flex. All instruments exhibited near-equiatomic proportions of nickel and titanium elements, whereas ProTaper Universal and U-Files instruments demonstrated lower phase transformation temperatures compared to their counterparts. Larger-sized instruments, as well as ProTaper Universal and U-Files, tended to display lower cyclic fatigue strength results. Overall, the design, metallurgical, and cyclic fatigue outcomes varied among instruments and systems. Understanding these outcomes may assist clinicians in making more informed decisions regarding instrument selection.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3