Research on the Effect Mechanism of Re on Interface Dislocation Networks of Ni–Based Single Crystal Alloys

Author:

Li Ben12,Zhou Hongyan1

Affiliation:

1. Engineering Research Center of Additive Manufacturing Aeronautical Materials of Henan Province, Nanyang Institute of Technology, Nanyang 473004, China

2. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

The effect of interface dislocation networks on the mechanical properties of new Ni–based single crystal alloys containing Rhenium (Re) is very large. Because the interface dislocations are microscopic in the nano–scale range, this has not been investigated, and it is very difficult to prepare new Ni–based single crystal alloys containing Re. Therefore, six kinds of new Ni–based single crystal alloys containing Re were prepared, and the hardness tests and nonlinear ultrasonic lamb wave tests were performed on the samples. It was found that the density of interface dislocation networks increases with the increase in the content of Re, which improves the blocking ability of matrix phase dislocation cutting into precipitated phase and enhances the inhibition of dislocation movement. The nonlinear ultrasonic lamb wave tests showed that the materials exhibit better mechanical properties when the density of the interface dislocation networks increases. Meanwhile, a new molecular dynamics model which is closer to the real state of an Ni–based single crystal alloy was constructed to reveal the evolution mechanism of interface dislocation networks. The results showed that the potential energy of Re atoms at the interface is the lowest, which affects the reduction of the potential energy of other atoms at the interface, and thus the stability of the model is improved. In addition, according to the change in the total length of dislocation loops in the model system, with the increase in the content of Re atoms, the inhibition of dislocation movement by dislocation networks at the interface is strengthened.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Doctoral Research of Nanyang Institute of Technology

Youth Science Foundation of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3