An Improved Model of Single-Event Transients Based on Effective Space Charge for Metal–Oxide–Semiconductor Field-Effect Transistor

Author:

Zhang Yutao1,Lu Hongliang1ORCID,Liu Chen1,Zhang Yuming1,Yao Ruxue1,Liu Xingming2

Affiliation:

1. Key Laboratory for Wide Band Gap Semiconductor Material and Devices of Education Ministry, School of Microelectronics, Xidian University, Xi’an 710071, China

2. SMiT Group Fuxin Technology Limited, Shenzhen 518000, China

Abstract

In this paper, a single-event transient model based on the effective space charge for MOSFETs is proposed. The physical process of deposited and moving charges is analyzed in detail. The influence of deposited charges on the electric field in the depletion region is investigated. The electric field decreases in a short time period due to the neutralization of the space charge. After that, the electric field increases first and then decreases when the deposited charge is moved out. The movement of the deposited charge in the body mainly occurs through ambipolar diffusion because of its high-density electrons and holes. The derivation of the variation in electric field in the depletion region is modeled in the physical process according to the analysis. In combination with the ambipolar diffusion model of excessive charge in the body, a physics-based model is built to describe the current pulse in the drain terminal. The proposed model takes into account the influence of multiple factors, like linear-energy transfer (LET), drain bias, and the doping concentration of the well. The model results are validated with the simulation results from TCAD. Through calculation, the root-mean-square error (RMSE) between the simulation and model is less than 3.7 × 10−4, which means that the model matches well with the TCAD results. Moreover, a CMOS inverter is simulated using TCAD and SPICE to validate the applicability of the proposed model in a circuit-level simulation. The proposed model captures the variation in net voltage in the inverter. The simulation result obviously shows the current plateau effect, while the relative error of the pulse width is 23.5%, much better than that in the classic model. In comparison with the classic model, the proposed model provides an RMSE of 7.59 × 10−5 for the output current curve and an RMSE of 0.158 for the output voltage curve, which are significantly better than those of the classic model. In the meantime, the proposed model does not produce extra simulation time compared with the classic double exponential model. So, the model has potential for application to flow estimation of the soft error rate (SER) at the circuit level to improve the accuracy of the results.

Funder

National Defense Science and Technology Foundation Strengthening Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3