Femtosecond Laser Machining of an X-ray Mask in a 500 Micron-Thick Tungsten Sheet

Author:

Owusu-Ansah Ebenezer1ORCID,Dalton Colin1ORCID

Affiliation:

1. Department of Electrical & Software Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada

Abstract

Femtosecond laser material processing (FLMP) was used to make an X-ray mask in a 500 µm thick tungsten sheet without the use of any chemical etch methods. The laser produced an 800 nm wavelength at a 1 kHz repetition rate and a pulse width of 100 fs. The laser beam arrival at the tungsten sheet was synchronized to a computer numerically controlled (CNC) stage that allowed for motion in the XYZθ directions. The X-ray mask design was made using CAD/CAM software (Alphacam 2019 R1) and it consisted of linear, circular, and 45° angle features that covered an area of 10 mm × 10 mm. A total of 70 laser beam passes at a moderate laser energy of 605.94 J/cm2 were used to make through-cut features into the tungsten sheet. The morphology of the top view (laser incident, LS) images showed cleaner and smoother cut edges relative to the bottom view (laser exit, LE) images. It was found that the size dimensions of the through-cut features on the LE surfaces were better aligned with the CAD dimensions than those of the LS surfaces. The focused laser beam produced inclined cut surfaces as the beam made the through cut from the LS to the LE of the tungsten sheet. The circular features at the LS surface deviated toward being oval-like on the LE surface, which could be compensated for in future CAD designs. The dependence of the CNC processing speed on the thickness of the etch depth was determined to have a third-order exponential decay relationship, thereby producing a theoretical model that will be useful for future investigators to predict the required experimental parameters needed to achieve a known etch depth in tungsten. This is the first study that has demonstrated the capability of using a femtosecond laser to machine through-cut an X-ray mask in a 500 µm thick tungsten sheet with no involvement of a wet etch or any other such supporting process.

Funder

Natural Sciences and Engineering Research Council

Canada Foundation for Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3