Investigating the Photovoltaic Performance in ABO3 Structures via the Nonlinear Bond Model for an Arbitrary Incoming Light Polarization

Author:

Hardhienata Hendradi1ORCID,Ramdhani Indra1,Alatas Husin1ORCID,Faci Salim2ORCID,Birowosuto Muhammad Danang3ORCID

Affiliation:

1. Theoretical Physics Division, Department of Physics, IPB University, Meranti Avenue, Wing S Building, Dramaga Campus of IPB, Bogor 16680, West Java, Indonesia

2. ESYCOM, Université Gustave Eiffel, CNRS, CNAM, 292, rue Saint-Martin, 75003 Paris, France

3. Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland

Abstract

ABO3 structures commonly known as perovskite are of high importance in advanced material science due to their interesting optical properties. Applications range from tunable band gaps, high absorption coefficients, and versatile electronic properties, making them ideal for solar cells to light-emitting diodes and even photodetectors. In this work, we present, for the first time, a nonlinear phenomenological bond model analysis of second harmonic generation (SHG) in tetragonal ABO3 with arbitrary input light polarization. We study the material symmetry and explore the strength of the nonlinear generalized third-rank tensorial elements, which can be exploited to produce a high SHG response if the incoming light polarization is correctly selected. We found that the calculated SHG intensity profile aligns well with existing experimental data. Additionally, as the incoming light polarization varies, we observed a smooth shift in the SHG intensity peak along with changes in the number of peaks. These observations confirm the results from existing rotational anisotropy SHG experiments. In addition, we show how spatial dispersion can contribute to the total SHG intensity. Our work highlights the possibility of studying relatively complex structures, such as ABO3, with minimal fitting parameters due to the power of the effective bond vector structure, enabling the introduction of an effective SHG hyperpolarizability rather than a full evaluation of the irreducible SHG tensor by group theoretical analysis. Such a simplification may well lead to a better understanding of the nonlinear properties in these classes of material and, in turn, can improve our understanding of the photovoltaic performance in ABO3 structures.

Funder

Penelitian Dasar Kompetitif Nasional

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3