A Novel Type of Pseudo-Decoupling Method for Two Degree-of-Freedom Piezoelectrically Driven Compliant Mechanisms Based on Elliptical Parameter Compensation

Author:

Wang Rongqi1ORCID,Zhou Xiaoqin1,Meng Haonan1ORCID,Liu Baizhi1

Affiliation:

1. Key Laboratory of CNC Equipment Reliability, School of Mechanical and Aerospace Engineering, Jilin University, Ministry of Education, Changchun 130022, China

Abstract

At present, a large number of two-degree-of-freedom piezoelectrically driven compliant mechanisms (2-DOF PDCMs) have been widely adopted to construct various elliptical vibration machining (EVM) devices employed in precisely fabricating functional micro-structured surfaces on difficult-to-cut materials, which have broad applications in many significant fields like optical engineering and precision manufacturing. For a higher precision of conventional 2-DOF PDCMs on tracking elliptical trajectories, a novel type of pseudo-decoupling method is proposed based on phase difference compensation (PDC). With finite element analysis (FEA), the dependences of elliptical trajectory tracking precision on PDC angles will then be investigated for optimizing PDC angles under different elliptical parameters. As the modification of the PDC-based method, another type of pseudo-decoupling method will be improved based on elliptical parameter compensation (EPC) for much higher tracking precision, an amplification coefficient and a coupling coefficient will be introduced to mathematically construct the EPC-based model. A series of FEA simulations will also be conducted on a conventional 2-DOF PDCM to calculate the amplification and coupling coefficients as well as optimize the EPC parameters under four series of elliptical parameters. The tracking precision and operational feasibility of these two new pseudo-decoupling methods on four series of elliptical trajectories will be further analyzed and discussed in detail. Meanwhile, a conventional 2-DOF PDCM will be practically adopted to build an experimental system for investigating the pseudo-decoupling performances of an EPC-based method, the input and output displacements will be measured and collected to actually calculate the amplification coefficients and coupling coefficients, further inversely solving the actual input elliptical parameters with EPC. The error distances between the expected and experimental elliptical trajectories will also be calculated and discussed. Finally, several critical conclusions on this study will be briefly summarized.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3