Pneumatic Microballoons for Active Control of the Vibration-Induced Flow

Author:

Sato Taku1,Kaneko Kanji1,Hayakawa Takeshi1ORCID,Suzuki Hiroaki1ORCID

Affiliation:

1. Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan

Abstract

Vibration-induced flow (VIF), in which a mean flow is induced around a microstructure by applying periodic vibrations, is increasingly used as an active flow-control technique at the microscale. In this study, we have developed a microdevice that actively controls the VIF patterns using elastic membrane protrusions (microballoons) actuated by pneumatic pressure. This device enables on-demand spatial and temporal fluid manipulation using a single device that cannot be achieved using a conventional fixed-structure arrangement. We successfully demonstrated that the device achieved displacements of up to 38 µm using the device within a pressure range of 0 to 30 kPa, indicating the suitability of the device for microfluidic applications. Using this active microballoon array, we demonstrated that the device can actively manipulate the flow field and induce swirling flows. Furthermore, we achieved selective actuation of the microballoon using this system. By applying air pressure from a multi-input channel system through a connection tube, the microballoons corresponding to each air channel can be selectively actuated. This enabled precise control of the flow field and periodic switching of the flow patterns using a single chip. In summary, the proposed microdevice provides active control of VIF patterns and has potential applications in advanced microfluidics, such as fluid mixing and particle manipulation.

Funder

JSPS KAKENHI

Japan Keirin Autorace Foundation

Institute of Science and Engineering, Chuo University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3