A Robust Memristor-Enhanced Polynomial Hyper-Chaotic Map and Its Multi-Channel Image Encryption Application

Author:

Qian Kun12ORCID,Xiao Yang3,Wei Yinjie3,Liu Di3,Wang Quanwen3,Feng Wei3ORCID

Affiliation:

1. Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, Hunan Institute of Science and Technology, Yueyang 414006, China

2. School of Physics and Electronic Science, Hunan Institute of Science and Technology, Yueyang 414006, China

3. School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, China

Abstract

Nowadays, the utilization of memristors to enhance the dynamical properties of chaotic systems has become a popular research topic. In this paper, we present the design of a novel 2D memristor-enhanced polynomial hyper-chaotic map (2D-MPHM) by utilizing the cross-coupling of two TiO2 memristors. The dynamical properties of the 2D-MPHM were investigated using Lyapunov exponents, bifurcation diagrams, and trajectory diagrams. Additionally, Kolmogorov entropy and sample entropy were also employed to evaluate the complexity of the 2D-MPHM. Numerical analysis has demonstrated the superiority of the 2D-MPHM. Subsequently, the proposed 2D-MPHM was applied to a multi-channel image encryption algorithm (MIEA-MPHM) whose excellent security was demonstrated by key space, key sensitivity, plaintext sensitivity, information entropy, pixel distribution, correlation analysis, and robustness analysis. Finally, the encryption efficiency of the MIEA-MPHM was evaluated via numerous encryption efficiency tests. These tests demonstrate that the MIEA-MPHM not only possesses excellent security but also offers significant efficiency advantages, boasting an average encryption rate of up to 87.2798 Mbps.

Funder

Guiding Science and Technology Plan Project of Panzhihua City

Innovation and Entrepreneurship Project for Chinese University Students

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3