A New Trend of Tourism in the Post-COVID-19 Era: Big Data Analysis of Online Tours in Korea

Author:

Kwon Hee-ju

Abstract

In this study, big data analysis on Korea’s “online tour”, which emerged as an alternative to satisfy tourism needs after COVID-19, was conducted. After extracting keywords through text mining for 24,073 posts from the top three most frequently visited social media platforms, Naver, Daum, and Google, to gather tour information in Korea, frequency analysis and TF-IDF analysis were run. In addition, network analyses, such as centrality and convergence of iteration correlation (CONCOR) analyses, were performed. The results showed: First, the sense of presence via local live streaming is crucial. It is vital to prepare a suitable video environment where tourists can immerse themselves in the tour. Second, the interaction between travel agencies, local guides, and tourists is important because it can expand tourists’ travel experiences. Third, the importance of online tour program content was revealed. It is necessary to increase the demand by designing various programs tailored to the audience. Fourth, new possibilities for local travel that had been neglected were uncovered. Fifth, the importance of online tourism production support was highlighted. The role of the government must be expanded to reinforce the digital capabilities of small- and medium-sized enterprises (SMEs) and to create jobs. Although the scope of this study is limited to Korea, it can definitely be used as a regional strategy.

Publisher

MDPI AG

Subject

General Social Sciences

Reference80 articles.

1. A two-dimensional approach to travel motivation in the context of the COVID-19 pandemic;Aebli;Current Issues in Tourism,2022

2. Storytelling about places: Tourism marketing in the digital age;Bassano;Cities,2019

3. BNN Bloomberg (2022, June 05). New Normal 2.0 for U.S. Economy Looks Awful, Long, Perilous. Available online: https://www.bnnbloomberg.ca/new-normal-2-0-for-u-s-economy-looks-awful-long-and-perilous-1.1435584.

4. Borgatti, Stephen P., Everett, Martin G., and Freeman, Linton C. (2014). Ucinet: Encyclopedia of Social Network Analysis and Mining, Springer.

5. The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres;Chiang;Enterprise Information Systems,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3