Study on the Mechanism and Control Strategy of Advanced Treatment of Yeast Wastewater by Ozone Catalytic Oxidation

Author:

Jing Xianglong,Cheng ShikunORCID,Men Cong,Zhu Huimin,Luo Mei,Li Zifu

Abstract

In this paper, the yeast wastewater secondary treatment effluent using catalytic odor oxidation treatment, using an orthogonal reaction experiment to determine the best reaction conditions, and the online monitoring of the pH, oxidation-reduction potential (ORP), and liquid ozone concentration monitoring, to the catalytic odor oxidation reaction, chemical oxygen demand (COD), and color removal effect were analyzed. The results showed that the optimal reaction condition for the advanced treatment of yeast wastewater by catalytic ozonation was accomplished with manganese dioxide used as the catalyst and a catalyst dose of 6 g·L−1, pH of 12, and catalytic ozonation reaction time of 20 min. The COD was effectively reduced from 880 mg·L−1 to 387 mg·L−1 under this condition, the chroma was reduced from 700 times to 40 times, and these two parameters of the effluent could meet the standard of GB25462-2010. The real-time monitoring system showed that the whole reaction can be divided into two processes. The first 14 min was the indirect reaction of ozone and then the direct oxidation reaction of ozone. This process was further verified by the change trend of COD and the amount of ozone depletion by COD removal. The average ozone consumption levels of the two stages were 1.97 and 4.91 mgO3·mgCOD−1. This system can effectively monitor the reaction of the catalytic odor oxidation in the complex system to guide the effective use of ozone in practical engineering applications.

Funder

National Key Research and Development Plan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3