Towards a Better Understanding of Long-Term Self-Forming Dynamic Membrane Bioreactor (SFDMBR) Performance: Effect of Aeration Intensity

Author:

Sun Fengkai,Wang Huimin,Peng Qian,Zhang Jian,Liang Shuang,Wang Xia

Abstract

This study aims to provide valuable new insights regarding the effect of aeration intensity on long-term self-forming dynamic membrane bioreactor (SFDMBR) performance and the associated mechanisms. Three identical SFDMBRs, with different aeration intensities (i.e., 200, 500 and 800 L/h), were operated in constant transmembrane (TMP) mode for 60 days. The best chemical oxygen demand (COD) removal performance was achieved at medium aeration intensity, owing to the enhanced COD removal contribution by the self-forming dynamic membrane (SFDM). As expected, the SFDM formation time was extended with increasing aeration intensity. Different from the initial short-term stage results, it was interestingly found that the SFDMBR operated at medium aeration intensity exhibited the best long-term filtration performance, followed in order by the SFDMBRs with low and high aeration intensity, respectively. Further analysis revealed that the governing fouling mechanism transited from biomass accumulation to the increase of specific resistance, as aeration intensity increased. The variation of SFDM-specific resistance was verified with particle size distribution (PSD) data and scanning electron microscopy (SEM) images. The long-term increasing rate of SFDM filtration resistance was consistent with both extracellular polymeric substances (EPS) content and the proteins/polysaccharides (PN/PS) ratio of SFDMs. Internal EPS production was enhanced in the thicker SFDM formed at a lower aeration intensity.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3