Detecting Anomalous Trajectories Using the Dempster-Shafer Evidence Theory Considering Trajectory Features from Taxi GNSS Data

Author:

Qin Kun,Wang YulongORCID,Wang Bijun

Abstract

In road networks, an ‘optimal’ trajectory is a geometrically optimal drive from the source point to the destination point. In reality, the driver’s driving experience or road traffic conditions will lead to differences between the ‘actual’ trajectory and the ‘optimal’ trajectory. When the differences are excessive, these trajectories are considered as anomalous trajectories. In addition, these differences can be observed in various trajectory features, such as velocity, distance, turns, and intersections. In this paper, our aim is to fuse these trajectory features and to quantitatively describe this difference to infer anomalous trajectories. The Dempster-Shafer (D-S) evidence theory is a theory and method that uses different features as evidence to infer uncertainty. The theory does not require prior knowledge or conditional probabilities. Therefore, we propose an automatic, anomalous trajectory inference method based on the D-S evidence theory that considers driving behavior and road network constraints. To achieve this objective, we first obtain all of the ‘actual’ trajectories of drivers for different source-destination pairs in taxi Global Navigation Satellite System (GNSS) trajectories. Second, we define and extract five trajectory features: route selection ( R S ), intersection rate ( I R ), heading change rate ( HCR ) , slow point rate ( SPR ), and velocity change rate ( VCR ) . Then, different features of each trajectory are combined as evidence according to Dempster’s combinational rule. The precise probability interval of each trajectory is calculated based on the D-S evidence theory. Finally, we obtain the anomalous possibility of all real trajectories and infer anomalous trajectories whose trajectory features are significantly different from normal ones. The experimental results show that the proposed method can infer anomalous trajectories effectively and that it can be used to monitor driver behavior automatically and to discover adverse urban traffic events.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems

Reference49 articles.

1. Uncovering Spatio-Temporal Cluster Patterns Using Massive Floating Car Data

2. Multimedia Video-Based Surveillance Systems: Requirements, Issues, and Solutions;Foresti,2000

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3