Mathematical Modeling of Capillary Drawing Stability for Hollow Optical Fibers

Author:

Pervadchuk Vladimir1,Vladimirova Daria1,Derevyankina Anna1

Affiliation:

1. Department of Applied Mathematics, Perm National Research Polytechnic University, 614990 Perm, Russia

Abstract

The stability problem solution of the manufacturing (drawing) of the quartz capillaries (pipes) for microstructured optical fibers (hole-assisted fiber) is important for determining the effective technological production modes. This importance is also caused by the high cost of fiber production and strict requirements for the accuracy of the fiber’s geometric characteristics. Therefore, a theoretical approach to this problem is relevant and necessary. A modified capillary drawing model that takes into account inertial, viscous, and surface tension forces, as well as all types of heat transfer is proposed in the research. Within the framework of the linear theory of stability, a mathematical model of isothermal and nonisothermal capillary drawing has been developed. The stability of the process is studied depending on the drawing ratio and the Reynolds number. The analysis of the sensitivity of the process to perturbations in the boundary conditions is carried out. The secondary flow that occurs upon transition to the region of instability is also studied. It has been found that at draw ratios above critical values (instability region), undamped oscillations arise. The existence of optimal parameters of the heating element is shown: temperature distribution over the furnace surface and furnace radius, at which the stability of the process of drawing quartz tubes increases significantly (several times).

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3